Physalis angulata Linn. As a Potential Liver Antifibrotic Agent In Rats.
(1) Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung
(2) Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung
(3) Veterinary Medicine Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung
(4) Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung
(5) Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung
(6) Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung
(7) Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung
(8) Study Center of Pharmaceutical Dosage Development, Department of Pharmaceutics and Pharmaceuticals Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung
(9) Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung
(10) Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung
(11) Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung
(12) Immunology Study Center, Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung
(13) Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung
Corresponding Author
Abstract
Background: No drug with a liver antifibrotic effect for treating non-alcoholic fatty liver disease (NAFLD) has been approved. Physalis angulata Linn., better known to Indonesian as ciplukan, has natural abilities in various metabolic and inflammatory diseases. This study aims to determine the effect of ethyl acetate fraction of P. angulata in the NAFLD rat model by examining alanine aminotransferase (ALT), cholesterol levels, and liver histopathological features, which are methods to evaluate the course of the disease and the potential antifibrotic effect.
Method: This research is an in vivo study on male Wistar rats conducted at the Animal Laboratory, Faculty of Medicine, Universitas Padjadjaran, from September to November 2020. Rats were grouped randomly into seven groups of 5 each. The NAFLD models were created by giving a diet containing 20% margarine for four weeks. The intervention groups were given vitamin E, ethyl acetate fraction of P. angulata, and both combinations. The statistical analysis examined differences in each group based on their histopathological features, ALT, and cholesterol levels.
Results: Histopathological results in the group given P. angulata at a dose of 0.32 mg resembled normal liver, and the ALT level was similar to vitamin E. The administration of P. angulata at 0.16 mg dose improved cholesterol levels.
Conclusions: P. angulata ethyl acetate fraction at a dose of 0.32 mg improved the histopathological and serum ALT levels in the NAFLD rat model, which could be the basis for the mechanism of P. angulata's antifibrotic ability in NAFLD conditions.
Keywords
References
Marchesini G, Day CP, Dufour JF, Canbay A, Nobili V, Ratziu
V, et al. EASL-EASD-EASO Clinical Practice Guidelines
for the management of non-alcoholic fatty liver disease. J
Hepatol [Internet]. 2016;64(6):1388–402. Available from:
http://dx.doi.org/10.1016/j.jhep.2015.11.004 doi: 10.1016/j.
jhep.2015.11.004
Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, et al.
Prevalence, incidence, and outcome of non-alcoholic fatty
liver disease in Asia, 1999–2019: a systematic review and
meta-analysis. Lancet Gastroenterol Hepatol [Internet].
;4(5):389–98. Available from: http://dx.doi.org/10.1016/
S2468-1253(19)30039-1 doi: 10.1016/S2468-1253(19)30039-
Delli Bovi AP, Marciano F, Mandato C, Siano MA, Savoia M,
Vajro P. Oxidative Stress in Non-alcoholic Fatty Liver Disease.
An Updated Mini Review. Front Med. 2021;8(February):1–14.
https://doi.org/10.3389/fmed.2021.595371
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit
pathogenesis of non-alcoholic fatty liver disease (NAFLD).
Metabolism [Internet]. 2016;65(8):1038–48. Available
from: http://dx.doi.org/10.1016/j.metabol.2015.12.012 doi:
1016/j.metabol.2015.12.012
Longhi R, Almeida RF, Machado L, Duarte MMMF, Souza
DG, Machado P, et al. Effect of a trans fatty acid-enriched
diet on biochemical and inflammatory parameters in Wistar
rats. Eur J Nutr. 2017;56(3):1003–16. https://doi.org/10.1007/
s00394-015-1148-y
Aydos LR, Amaral LA Do, Souza RS de, Jacobowski AC,
Santos EF Dos, Macedo MLR. Nonalcoholic fatty liver
disease induced by high-fat diet in C57BL/6 models. Nutrients.
;11(12):1–12. https://doi.org/10.3390/nu11123067
Van Herck MA, Vonghia L, Francque SM. Animal models of
nonalcoholic fatty liver disease—a starter’s guide. Nutrients.
;9(10):1–13. https://doi.org/10.3390/nu9101072
Dhibi M, Brahmi F, Mnari A, Houas Z, Chargui I, Bchir L,
et al. The intake of high fat diet with different trans fatty acid
levels differentially induces oxidative stress and non alcoholic
fatty liver disease (NAFLD) in rats. Nutr Metab. 2011;8:1–12.
https://doi.org/10.1186/1743-7075-8-65
Leoni S, Tovoli F, Napoli L, Serio I, Ferri S, Bolondi L.
Current guidelines for the management of non-alcoholic
fatty liver disease: A systematic review with comparative
analysis. World J Gastroenterol [Internet]. 2018/08/14.
;24(30):3361–73. Available from: https://www.ncbi.nlm.
nih.gov/pubmed/30122876 doi: 10.3748/wjg.v24.i30.3361
Rinella M, Tacke F, Sanyal A, Anstee Q. Report on the
AASLD/ EASL joint workshop on clinical trial endpoints in
NAFLD. J Hepatol. 2019;71:823–833.
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal
AJ. Mechanisms of NAFLD development and therapeutic
strategies. Nat Med [Internet]. 2018;24(7):908–22. Available
from: http://dx.doi.org/10.1038/s41591-018-0104-9 doi:
1038/s41591-018-0104-9
Sanyal A, Chalasani N, Kowdley K, McCullough A, Diehl
A, Bass N, et al. Pioglitazone, vitamin E, or placebo for
nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–
Bril F, Biernacki DM, Kalavalapalli S, Lomonaco R,
Subbarayan SK, Lai J, et al. Role of Vitamin E for nonalcoholic
steatohepatitis in patients with type 2 diabetes: A randomized
controlled trial. Diabetes Care. 2019;42(8):1481–8. https://
doi.org/10.2337/dc19-0167
Choi E-M, Hwang J-K. Investigations of anti-inflammatory
and antinociceptive activities of Piper cubeba, Physalis
angulata and Rosa hybrida. J Ethnopharmacol [Internet].
;89(1):171–5. Available from: http://www.sciencedirect.
com/science/article/pii/S0378874103002800 doi: https://doi.
org/10.1016/S0378-8741(03)00280-0
Yang Y-J, Yi L, Wang Q, Xie B-B, Dong Y, Sha C-W.
Anti-inflammatory effects of physalin E from Physalis
angulata on lipopolysaccharide-stimulated RAW 264.7 cells
through inhibition of NF-κB pathway. Immunopharmacol
Immunotoxicol [Internet]. 2017;39(2):74–9. Available
from: https://doi.org/10.1080/08923973.2017.1282514 doi:
1080/08923973.2017.1282514
Rohmawaty E, Rosdianto AM, Usman HA, Saragih WAM,
Zuhrotun A, Hendriani R, et al. Antifibrotic effect of the ethyl
acetate fraction of ciplukan (Physalis angulata Linn.) in rat liver
fibrosis induced by CCI4. J Appl Pharm Sci. 2021;11(12):175–
https://doi.org/10.7324/JAPS.2021.1101217
Dewi S, Isbagio H, Purwaningsih EH, Kertia N, Setiabudy
R, Setiati S. A Double-blind, Randomized Controlled Trial of
Ciplukan (Physalis angulata Linn) Extract on Skin Fibrosis,
Inflammatory, Immunology, and Fibrosis Biomarkers in
Scleroderma Patients. Acta Med Indones. 2019;51(4):303–10.
Kusumaningtyas R, Laily N, Limandha P. Potential of
Ciplukan (Physalis Angulata L.) as Source of Functional
Ingredient. Procedia Chem [Internet]. 2015;14:367–72.
Available from: http://www.sciencedirect.com/science/
article/pii/S1876619615000510 doi: https://doi.org/10.1016/j.
proche.2015.03.050
Mahalaksmi A, Nidavani R. Physalis angulata L. An
Ethnopharmacological review. Indo Am J Pharm Res.
;4(3):1479-1486.
Guillaumie F, Justesen SFL, Mutenda KE, Roepstorff
P, Jensen KJ, Thomas ORT. Fractionation, solid-phase
immobilization and chemical degradation of long pectin
oligogalacturonides. Initial steps towards sequencing of
oligosaccharides. Carbohydr Res. 2006;341(1):118–29.
https://doi.org/10.1016/j.carres.2005.10.011
Pincus MR, Tierno PM, Gleeson E, Bowne WB. Evaluation
of Liver Function. In: Henry’s Clinical Diagnosis and
Management by Laboratory Methods. 23rd ed. Elsevier Inc.;
p. 295–6.
Kwo PY, Cohen SM, Lim JK. ACG Clinical Guideline:
Evaluation of Abnormal Liver Chemistries. Am J Gastroenterol
[Internet]. 2017;112(1):18–35. Available from: http://dx.doi.
org/10.1038/ajg.2016.517 doi: 10.1038/ajg.2016.517
Singh AS, Masuku MB. SAMPLING TECHNIQUES &
DETERMINATION OF SAMPLE SIZE IN APPLIED
STATISTICS RESEARCH: AN OVERVIEW. Int j Econ
Commer Manag. 2014;II(11):1–22.
Albrecht M, Henke J, Tacke S, Markert M, Guth B. Effects
of isoflurane, ketamine-xylazine and a combination of
medetomidine, midazolam and fentanyl on physiological
variables continuously measured by telemetry in Wistar rats.
BMC Vet Res. 2014;10(1):1–14. https://doi.org/10.1186/
s12917-014-0198-3
El Hadi H, Vettor R, Rossato M. Vitamin E as a treatment for
nonalcoholic fatty liver disease: Reality or myth? Antioxidants.
;7(1). https://doi.org/10.3390/antiox7010012
Caldwell S, Ikura Y, Dias D, Isomoto K, Yabu A, Moskaluk
C, et al. Hepatocellular Ballooning in NASH Stephen. J
Hepatol. 2011;53(4):719–23. https://doi.org/10.1016/j.
jhep.2010.04.031.Hepatocellular
Rafiq N, Bai C, Fang Y, Srishord M, McCullough A, Gramlich
T, et al. Long-term follow- up of patients with nonalcoholic
fatty liver. Clin Gastroenterol Hepatol. 2009;7:234–8.
Gramlich T, Kleiner DE, McCullough AJ, Matteoni CA,
Boparai N YZ. Pathological features associated with fibrosis
in nonalcoholic fatty liver disease. Hum Pathol. 2004;35:196–
Carotti S, Vespasiani-Gentilucci U, Perrone G, Picardi A,
Morini S. Portal inflammation during NAFLD is frequent and
associated with the early phases of putative hepatic progenitor
cell activation. J Clin Pathol. 2015;68(11):883–90. https://doi.
org/10.1136/jclinpath-2014-202717
Brunt EM, Kleiner DE, Wilson LA, Unalp A, Behling CE,
Lavine JE, et al. Portal Chronic Inflammation in Nonalcoholic
Fatty Liver Disease. Hepatology. 2009;49(3):809–20. https://
doi.org/10.1002/hep.22724.Portal
Kim KH, Lee M-S. Pathogenesis of Nonalcoholic
Steatohepatitis and Hormone-Based Therapeutic Approaches.
Front Endocrinol (Lausanne) [Internet]. 2018;9(485).
Available from: https://www.frontiersin.org/article/10.3389/
fendo.2018.00485 doi: 10.3389/fendo.2018.00485
Soares MBP, Bellintani MC, Ribeiro IM, Tomassini TCB,
Ribeiro dos Santos R. Inhibition of macrophage activation
and lipopolysaccaride-induced death by seco-steroids
purified from Physalis angulata L. Eur J Pharmacol
[Internet]. 2003;459(1):107–12. Available from: http://www.
sciencedirect.com/science/article/pii/S0014299902028297
doi: https://doi.org/10.1016/S0014-2999(02)02829-7
Czauderna C, Castven D, Mahn F, Marquardt J. Context-
Dependent Role of NF- κ B Signaling in Primary Liver Cancer
Volume 24, Number 3, December 2023 215
Physalis angulata Linn. As a Potential Liver Antifibrotic Agent In Rats
— from Tumor Development to Therapeutic Implications.
Cancers (Basel). 2019;11(8):1053. https://doi.org/https://doi.
org/10.3390/cancers11081053
Porika RP, Lunavath V, Mamidala E. Preliminary
phytochemical investigation and TLC analysis of Physalis
angulata fruit extract. J Pharm Bio Sci. 2014;9(2):11–4.
Martín-Fernández M, Arroyo V, Carnicero C, Sigüenza R,
Busta R, Mora N, et al. Role of Oxidative Stress and Lipid
Peroxidation in the Pathophysiology of NAFLD. Antioxidants.
;11(11):2217. https://doi.org/10.3390/antiox11112217
Ioannou GN. The role of cholesterol in the pathogenesis of
NASH. Trends Endocrinol Metab. 2016;27(2):84–95.
Ioannou G, Subramanian S, Chait A, Haigh W, Yeh M,
Farrell G, et al. Cholesterol crystallization within hepatocyte
lipid droplets and its role in murine NASH. J Lipid Res.
;58:1067–79.
Bieghs V, Hendrikx T, van Gorp P, Verheyen F, Guichot
Y, Walenbergh S, et al. The cholesterol derivative
-hydroxycholesterol reduces steatohepatitis in mice.
Gastroenterology. 2013;144:167–78.
Tirosh O. Hypoxic signaling and cholesterol lipotoxicity
in fatty liver disease progression. Oxid Med Cell Longev.
;2018:2548154.
Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H, Narimatsu
K, et al. Acyl-CoA:cholesterol acyltransferase 1 mediates liver
fibrosis by regulating free cholesterol accumulation in hepatic
stellate cells. J Hepatol. 2014;61:98– 106.
Permatasari N, Kumala YR, Sulakso T. Efek ekstrak daun
ciplukan (Physalis minima L.) terhadap kadar malondialdehid
tulang mandibula tikus (Rattus norvegicus) wistar pasca
ovariektomi. Prodenta J Densitry. 2017;1(1):35–46.
Krishna M, Vadluri R, Kumar EM. In Vitro Determination of
Antioxidant activity of Physalis angulata Linn. Int J Pharma
Bio Sci. 2013;
Article Metrics
Abstract View : 471 timesRemote Download : 71 times PDF Download : 204 times
DOI: 10.24871/2432023206
Refbacks
- There are currently no refbacks.